Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(17): e2314357121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38630720

RESUMEN

Characterizing the relationship between disease testing behaviors and infectious disease dynamics is of great importance for public health. Tests for both current and past infection can influence disease-related behaviors at the individual level, while population-level knowledge of an epidemic's course may feed back to affect one's likelihood of taking a test. The COVID-19 pandemic has generated testing data on an unprecedented scale for tests detecting both current infection (PCR, antigen) and past infection (serology); this opens the way to characterizing the complex relationship between testing behavior and infection dynamics. Leveraging a rich database of individualized COVID-19 testing histories in New Jersey, we analyze the behavioral relationships between PCR and serology tests, infection, and vaccination. We quantify interactions between individuals' test-taking tendencies and their past testing and infection histories, finding that PCR tests were disproportionately taken by people currently infected, and serology tests were disproportionately taken by people with past infection or vaccination. The effects of previous positive test results on testing behavior are less consistent, as individuals with past PCR positives were more likely to take subsequent PCR and serology tests at some periods of the epidemic time course and less likely at others. Lastly, we fit a model to the titer values collected from serology tests to infer vaccination trends, finding a marked decrease in vaccination rates among individuals who had previously received a positive PCR test. These results exemplify the utility of individualized testing histories in uncovering hidden behavioral variables affecting testing and vaccination.


Asunto(s)
Prueba de COVID-19 , COVID-19 , Humanos , New Jersey , Pandemias , Vacunación
2.
Nat Commun ; 15(1): 1126, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321046

RESUMEN

Highly pathogenic avian influenza virus (HPAIV) A H5, particularly clade 2.3.4.4, has caused worldwide outbreaks in domestic poultry, occasional spillover to humans, and increasing deaths of diverse species of wild birds since 2014. Wild bird migration is currently acknowledged as an important ecological process contributing to the global dispersal of HPAIV H5. However, this mechanism has not been quantified using bird movement data from different species, and the timing and location of exposure of different species is unclear. We sought to explore these questions through phylodynamic analyses based on empirical data of bird movement tracking and virus genome sequences of clade 2.3.4.4 and 2.3.2.1. First, we demonstrate that seasonal bird migration can explain salient features of the global dispersal of clade 2.3.4.4. Second, we detect synchrony between the seasonality of bird annual cycle phases and virus lineage movements. We reveal the differing exposed bird orders at geographical origins and destinations of HPAIV H5 clade 2.3.4.4 lineage movements, including relatively under-discussed orders. Our study provides a phylodynamic framework that links the bird movement ecology and genomic epidemiology of avian influenza; it highlights the importance of integrating bird behavior and life history in avian influenza studies.


Asunto(s)
Migración Animal , Virus de la Influenza A , Gripe Aviar , Animales , Animales Salvajes , Aves , Virus de la Influenza A/genética , Gripe Aviar/transmisión , Filogenia , Aves de Corral
3.
Nat Commun ; 15(1): 605, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38242897

RESUMEN

Theoretical models have successfully predicted the evolution of poultry pathogen virulence in industrialized farm contexts of broiler chicken populations. Whether there are ecological factors specific to more traditional rural farming that affect virulence is an open question. Within non-industrialized farming networks, live bird markets are known to be hotspots of transmission, but whether they could shift selection pressures on the evolution of poultry pathogen virulence has not been addressed. Here, we revisit predictions for the evolution of virulence for viral poultry pathogens, such as Newcastle's disease virus, Marek's disease virus, and influenza virus, H5N1, using a compartmental model that represents transmission in rural markets. We show that both the higher turnover rate and higher environmental persistence in markets relative to farms could select for higher optimal virulence strategies. In contrast to theoretical results modeling industrialized poultry farms, we find that cleaning could also select for decreased virulence in the live poultry market setting. Additionally, we predict that more virulent strategies selected in markets could circulate solely within poultry located in markets. Thus, we recommend the close monitoring of markets not only as hotspots of transmission, but as potential sources of more virulent strains of poultry pathogens.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Animales , Aves de Corral , Pollos , Granjas , Modelos Epidemiológicos
4.
Epidemics ; 46: 100736, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38118274

RESUMEN

Recent outbreaks of enterovirus D68 (EV-D68) infections, and their causal linkage with acute flaccid myelitis (AFM), continue to pose a serious public health concern. During 2020 and 2021, the dynamics of EV-D68 and other pathogens have been significantly perturbed by non-pharmaceutical interventions against COVID-19; this perturbation presents a powerful natural experiment for exploring the dynamics of these endemic infections. In this study, we analyzed publicly available data on EV-D68 infections, originally collected through the New Vaccine Surveillance Network, to predict their short- and long-term dynamics following the COVID-19 interventions. Although long-term predictions are sensitive to our assumptions about underlying dynamics and changes in contact rates during the NPI periods, the likelihood of a large outbreak in 2023 appears to be low. Comprehensive surveillance data are needed to accurately characterize future dynamics of EV-D68. The limited incidence of AFM cases in 2022, despite large EV-D68 outbreaks, poses further questions for the timing of the next AFM outbreaks.


Asunto(s)
COVID-19 , Enfermedades Virales del Sistema Nervioso Central , Enterovirus Humano D , Infecciones por Enterovirus , Mielitis , Enfermedades Neuromusculares , Humanos , COVID-19/epidemiología , Enfermedades Neuromusculares/epidemiología , Mielitis/epidemiología , Brotes de Enfermedades , Infecciones por Enterovirus/epidemiología , Infecciones por Enterovirus/prevención & control
5.
Influenza Other Respir Viruses ; 17(12): e13229, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38090227

RESUMEN

Background: The South African government employed various nonpharmaceutical interventions (NPIs) to reduce the spread of SARS-CoV-2. Surveillance data from South Africa indicates reduced circulation of respiratory syncytial virus (RSV) throughout the 2020-2021 seasons. Here, we use a mechanistic transmission model to project the rebound of RSV in the two subsequent seasons. Methods: We fit an age-structured epidemiological model to hospitalization data from national RSV surveillance in South Africa, allowing for time-varying reduction in RSV transmission during periods of COVID-19 circulation. We apply the model to project the rebound of RSV in the 2022 and 2023 seasons. Results: We projected an early and intense outbreak of RSV in April 2022, with an age shift to older infants (6-23 months old) experiencing a larger portion of severe disease burden than typical. In March 2022, government alerts were issued to prepare the hospital system for this potentially intense outbreak. We then assess the 2022 predictions and project the 2023 season. Model predictions for 2023 indicate that RSV activity has not fully returned to normal, with a projected early and moderately intense wave. We estimate that NPIs reduced RSV transmission between 15% and 50% during periods of COVID-19 circulation. Conclusions: A wide range of NPIs impacted the dynamics of the RSV outbreaks throughout 2020-2023 in regard to timing, magnitude, and age structure, with important implications in a low- and middle-income countries (LMICs) setting where RSV interventions remain limited. More efforts should focus on adapting RSV models to LMIC data to project the impact of upcoming medical interventions for this disease.


Asunto(s)
COVID-19 , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Lactante , Humanos , Preescolar , Sudáfrica/epidemiología , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/prevención & control , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2 , Estaciones del Año
6.
J R Soc Interface ; 20(205): 20230247, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37643641

RESUMEN

As the SARS-CoV-2 trajectory continues, the longer-term immuno-epidemiology of COVID-19, the dynamics of Long COVID, and the impact of escape variants are important outstanding questions. We examine these remaining uncertainties with a simple modelling framework that accounts for multiple (antigenic) exposures via infection or vaccination. If immunity (to infection or Long COVID) accumulates rapidly with the valency of exposure, we find that infection levels and the burden of Long COVID are markedly reduced in the medium term. More pessimistic assumptions on host adaptive immune responses illustrate that the longer-term burden of COVID-19 may be elevated for years to come. However, we also find that these outcomes could be mitigated by the eventual introduction of a vaccine eliciting robust (i.e. durable, transmission-blocking and/or 'evolution-proof') immunity. Overall, our work stresses the wide range of future scenarios that still remain, the importance of collecting real-world epidemiological data to identify likely outcomes, and the crucial need for the development of a highly effective transmission-blocking, durable and broadly protective vaccine.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Síndrome Post Agudo de COVID-19 , SARS-CoV-2 , Enfermedad Crónica , Incertidumbre
7.
Proc Biol Sci ; 290(2002): 20230343, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37434526

RESUMEN

Infectious diseases may cause some long-term damage to their host, leading to elevated mortality even after recovery. Mortality due to complications from so-called 'long COVID' is a stark illustration of this potential, but the impacts of such post-infection mortality (PIM) on epidemic dynamics are not known. Using an epidemiological model that incorporates PIM, we examine the importance of this effect. We find that in contrast to mortality during infection, PIM can induce epidemic cycling. The effect is due to interference between elevated mortality and reinfection through the previously infected susceptible pool. In particular, robust immunity (via decreased susceptibility to reinfection) reduces the likelihood of cycling; on the other hand, disease-induced mortality can interact with weak PIM to generate periodicity. In the absence of PIM, we prove that the unique endemic equilibrium is stable and therefore our key result is that PIM is an overlooked phenomenon that is likely to be destabilizing. Overall, given potentially widespread effects, our findings highlight the importance of characterizing heterogeneity in susceptibility (via both PIM and robustness of host immunity) for accurate epidemiological predictions. In particular, for diseases without robust immunity, such as SARS-CoV-2, PIM may underlie complex epidemiological dynamics especially in the context of seasonal forcing.


Asunto(s)
COVID-19 , Epidemias , Humanos , COVID-19/epidemiología , Reinfección , SARS-CoV-2 , Síndrome Post Agudo de COVID-19
8.
PNAS Nexus ; 2(7): pgad201, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37457892

RESUMEN

Mathematical models have played a crucial role in exploring and guiding pandemic responses. University campuses present a particularly well-documented case for institutional outbreaks, thereby providing a unique opportunity to understand detailed patterns of pathogen spread. Here, we present descriptive and modeling analyses of SARS-CoV-2 transmission on the Princeton University (PU) campus-this model was used throughout the pandemic to inform policy decisions and operational guidelines for the university campus. Epidemic patterns between the university campus and surrounding communities exhibit strong spatiotemporal correlations. Mathematical modeling analysis further suggests that the amount of on-campus transmission was likely limited during much of the wider pandemic until the end of 2021. Finally, we find that a superspreading event likely played a major role in driving the Omicron variant outbreak on the PU campus during the spring semester of the 2021-2022 academic year. Despite large numbers of cases on campus in this period, case levels in surrounding communities remained low, suggesting that there was little spillover transmission from campus to the local community.

9.
Math Biosci ; 362: 109024, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37270102

RESUMEN

Defending against novel, repeated, or unpredictable attacks, while avoiding attacks on the 'self', are the central problems of both mammalian immune systems and computer systems. Both systems have been studied in great detail, but with little exchange of information across the different disciplines. Here, we present a conceptual framework for structured comparisons across the fields of biological immunity and cybersecurity, by framing the context of defense, considering different (combinations of) defensive strategies, and evaluating defensive performance. Throughout this paper, we pose open questions for further exploration. We hope to spark the interdisciplinary discovery of general principles of optimal defense, which can be understood and applied in biological immunity, cybersecurity, and other defensive realms.


Asunto(s)
Seguridad Computacional
10.
Proc Natl Acad Sci U S A ; 120(22): e2221887120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216529

RESUMEN

Estimating the differences in the incubation-period, serial-interval, and generation-interval distributions of SARS-CoV-2 variants is critical to understanding their transmission. However, the impact of epidemic dynamics is often neglected in estimating the timing of infection-for example, when an epidemic is growing exponentially, a cohort of infected individuals who developed symptoms at the same time are more likely to have been infected recently. Here, we reanalyze incubation-period and serial-interval data describing transmissions of the Delta and Omicron variants from the Netherlands at the end of December 2021. Previous analysis of the same dataset reported shorter mean observed incubation period (3.2 d vs. 4.4 d) and serial interval (3.5 d vs. 4.1 d) for the Omicron variant, but the number of infections caused by the Delta variant decreased during this period as the number of Omicron infections increased. When we account for growth-rate differences of two variants during the study period, we estimate similar mean incubation periods (3.8 to 4.5 d) for both variants but a shorter mean generation interval for the Omicron variant (3.0 d; 95% CI: 2.7 to 3.2 d) than for the Delta variant (3.8 d; 95% CI: 3.7 to 4.0 d). The differences in estimated generation intervals may be driven by the "network effect"-higher effective transmissibility of the Omicron variant can cause faster susceptible depletion among contact networks, which in turn prevents late transmission (therefore shortening realized generation intervals). Using up-to-date generation-interval distributions is critical to accurately estimating the reproduction advantage of the Omicron variant.


Asunto(s)
COVID-19 , Epidemias , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Países Bajos/epidemiología
12.
PNAS Nexus ; 2(4): pgad106, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37091542

RESUMEN

Asymptomatic infections have hampered the ability to characterize and prevent the transmission of SARS-CoV-2 throughout the pandemic. Although asymptomatic infections reduce severity at the individual level, they can make population-level outcomes worse if asymptomatic individuals-unaware they are infected-transmit more than symptomatic individuals. Using an epidemic model, we show that intermediate levels of asymptomatic infection lead to the highest levels of epidemic fatalities when the decrease in symptomatic transmission, due either to individual behavior or mitigation efforts, is strong. We generalize this result to include presymptomatic transmission, showing that intermediate levels of nonsymptomatic transmission lead to the highest levels of fatalities. Finally, we extend our framework to illustrate how the intersection of asymptomatic spread and immunity profiles determine epidemic trajectories, including population-level severity, of future variants. In particular, when immunity provides protection against symptoms, but not against infections or deaths, epidemic trajectories can have faster growth rates and higher peaks, leading to more total deaths. Conversely, even modest levels of protection against infection can mitigate the population-level effects of asymptomatic spread.

13.
Nat Commun ; 14(1): 1746, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36990986

RESUMEN

Characterizing the long-term kinetics of maternally derived and vaccine-induced measles immunity is critical for informing measles immunization strategies moving forward. Based on two prospective cohorts of children in China, we estimate that maternally derived immunity against measles persists for 2.4 months. Following two-dose series of measles-containing vaccine (MCV) at 8 and 18 months of age, the immune protection against measles is not lifelong, and antibody concentrations are extrapolated to fall below the protective threshold of 200 mIU/ml at 14.3 years. A catch-up MCV dose in addition to the routine doses between 8 months and 5 years reduce the cumulative incidence of seroreversion by 79.3-88.7% by the age of 6 years. Our findings also support a good immune response after the first MCV vaccination at 8 months. These findings, coupled with the effectiveness of a catch-up dose in addition to the routine doses, could be instrumental to relevant stakeholders when planning routine immunization schedules and supplemental immunization activities.


Asunto(s)
Sarampión , Niño , Humanos , Lactante , Adolescente , Estudios Longitudinales , Estudios Prospectivos , Sarampión/epidemiología , Sarampión/prevención & control , Vacuna Antisarampión , Vacunación , Anticuerpos Antivirales , China/epidemiología
14.
PLoS Comput Biol ; 19(2): e1010896, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36791146

RESUMEN

Identifying drivers of viral diversity is key to understanding the evolutionary as well as epidemiological dynamics of the COVID-19 pandemic. Using rich viral genomic data sets, we show that periods of steadily rising diversity have been punctuated by sudden, enormous increases followed by similarly abrupt collapses of diversity. We introduce a mechanistic model of saltational evolution with epistasis and demonstrate that these features parsimoniously account for the observed temporal dynamics of inter-genomic diversity. Our results provide support for recent proposals that saltational evolution may be a signature feature of SARS-CoV-2, allowing the pathogen to more readily evolve highly transmissible variants. These findings lend theoretical support to a heightened awareness of biological contexts where increased diversification may occur. They also underline the power of pathogen genomics and other surveillance streams in clarifying the phylodynamics of emerging and endemic infections. In public health terms, our results further underline the importance of equitable distribution of up-to-date vaccines.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Pandemias , Epistasis Genética/genética , Genómica
15.
J Glob Health ; 13: 04007, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36757127

RESUMEN

Background: The emergence of COVID-19 triggered the massive implementation of non-pharmaceutical interventions (NPI) which impacted the circulation of respiratory syncytial virus (RSV) during the 2020/2021 season. Methods: A time-series susceptible-infected-recovered (TSIR) model was used early September 2021 to forecast the implications of this disruption on the future 2021/2022 RSV epidemic in Lyon urban population. Results: When compared to observed hospital-confirmed cases, the model successfully captured the early start, peak timing, and end of the 2021/2022 RSV epidemic. These simulations, added to other streams of surveillance data, shared and discussed among the local field experts were of great value to mitigate the consequences of this atypical RSV outbreak on our hospital paediatric department. Conclusions: TSIR model, fitted to local hospital data covering large urban areas, can produce plausible post-COVID-19 RSV simulations. Collaborations between modellers and hospital management (who are both model users and data providers) should be encouraged in order to validate the use of dynamical models to timely allocate hospital resources to the future RSV epidemics.


Asunto(s)
COVID-19 , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Niño , Humanos , Lactante , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/prevención & control , Estaciones del Año , COVID-19/epidemiología , Francia/epidemiología
16.
PLoS Comput Biol ; 19(2): e1010893, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36848387

RESUMEN

Influenza pandemics typically occur in multiple waves of infection, often associated with initial emergence of a novel virus, followed (in temperate regions) by a resurgence accompanying the onset of the annual influenza season. Here, we examined whether data collected from an initial pandemic wave could be informative, for the need to implement non-pharmaceutical measures in any resurgent wave. Drawing from the 2009 H1N1 pandemic in 10 states in the USA, we calibrated simple mathematical models of influenza transmission dynamics to data for laboratory confirmed hospitalisations during the initial 'spring' wave. We then projected pandemic outcomes (cumulative hospitalisations) during the fall wave, and compared these projections with data. Model results showed reasonable agreement for all states that reported a substantial number of cases in the spring wave. Using this model we propose a probabilistic decision framework that can be used to determine the need for preemptive measures such as postponing school openings, in advance of a fall wave. This work illustrates how model-based evidence synthesis, in real-time during an early pandemic wave, could be used to inform timely decisions for pandemic response.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Humanos , Estaciones del Año , Hospitalización , Instituciones Académicas
17.
Elife ; 122023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36811598

RESUMEN

Excess mortality studies provide crucial information regarding the health burden of pandemics and other large-scale events. Here, we use time series approaches to separate the direct contribution of SARS-CoV-2 infection on mortality from the indirect consequences of the pandemic in the United States. We estimate excess deaths occurring above a seasonal baseline from March 1, 2020 to January 1, 2022, stratified by week, state, age, and underlying mortality condition (including COVID-19 and respiratory diseases; Alzheimer's disease; cancer; cerebrovascular diseases; diabetes; heart diseases; and external causes, which include suicides, opioid overdoses, and accidents). Over the study period, we estimate an excess of 1,065,200 (95% Confidence Interval (CI) 909,800-1,218,000) all-cause deaths, of which 80% are reflected in official COVID-19 statistics. State-specific excess death estimates are highly correlated with SARS-CoV-2 serology, lending support to our approach. Mortality from 7 of the 8 studied conditions rose during the pandemic, with the exception of cancer. To separate the direct mortality consequences of SARS-CoV-2 infection from the indirect effects of the pandemic, we fit generalized additive models (GAM) to age- state- and cause-specific weekly excess mortality, using covariates representing direct (COVID-19 intensity) and indirect pandemic effects (hospital intensive care unit (ICU) occupancy and measures of interventions stringency). We find that 84% (95% CI 65-94%) of all-cause excess mortality can be statistically attributed to the direct impact of SARS-CoV-2 infection. We also estimate a large direct contribution of SARS-CoV-2 infection (≥67%) on mortality from diabetes, Alzheimer's, heart diseases, and in all-cause mortality among individuals over 65 years. In contrast, indirect effects predominate in mortality from external causes and all-cause mortality among individuals under 44 years, with periods of stricter interventions associated with greater rises in mortality. Overall, on a national scale, the largest consequences of the COVID-19 pandemic are attributable to the direct impact of SARS-CoV-2 infections; yet, the secondary impacts dominate among younger age groups and in mortality from external causes. Further research on the drivers of indirect mortality is warranted as more detailed mortality data from this pandemic becomes available.


Asunto(s)
COVID-19 , Neoplasias , Suicidio , Humanos , Estados Unidos , COVID-19/epidemiología , Pandemias , SARS-CoV-2
18.
Proc Natl Acad Sci U S A ; 119(49): e2208895119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36445971

RESUMEN

COVID-19 nonpharmaceutical interventions (NPIs), including mask wearing, have proved highly effective at reducing the transmission of endemic infections. A key public health question is whether NPIs could continue to be implemented long term to reduce the ongoing burden from endemic pathogens. Here, we use epidemiological models to explore the impact of long-term NPIs on the dynamics of endemic infections. We find that the introduction of NPIs leads to a strong initial reduction in incidence, but this effect is transient: As susceptibility increases, epidemics return while NPIs are in place. For low R0 infections, these return epidemics are of reduced equilibrium incidence and epidemic peak size. For high R0 infections, return epidemics are of similar magnitude to pre-NPI outbreaks. Our results underline that managing ongoing susceptible buildup, e.g., with vaccination, remains an important long-term goal.


Asunto(s)
COVID-19 , Epidemias , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Epidemias/prevención & control , Brotes de Enfermedades/prevención & control , Modelos Epidemiológicos , Salud Pública
19.
Proc Natl Acad Sci U S A ; 119(41): e2213525119, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36191222

RESUMEN

Behavioral responses influence the trajectories of epidemics. During the COVID-19 pandemic, nonpharmaceutical interventions (NPIs) reduced pathogen transmission and mortality worldwide. However, despite the global pandemic threat, there was substantial cross-country variation in the adoption of protective behaviors that is not explained by disease prevalence alone. In particular, many countries show a pattern of slow initial mask adoption followed by sharp transitions to high acceptance rates. These patterns are characteristic of behaviors that depend on social norms or peer influence. We develop a game-theoretic model of mask wearing where the utility of wearing a mask depends on the perceived risk of infection, social norms, and mandates from formal institutions. In this model, increasing pathogen transmission or policy stringency can trigger social tipping points in collective mask wearing. We show that complex social dynamics can emerge from simple individual interactions and that sociocultural variables and local policies are important for recovering cross-country variation in the speed and breadth of mask adoption. These results have implications for public health policy and data collection.


Asunto(s)
COVID-19 , Máscaras , Pandemias , COVID-19/epidemiología , COVID-19/prevención & control , Humanos , Pandemias/prevención & control , Política Pública , Riesgo , SARS-CoV-2 , Condiciones Sociales
20.
PLoS Comput Biol ; 18(9): e1010251, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36074763

RESUMEN

Measles is one the best-documented and most-mechanistically-studied non-linear infectious disease dynamical systems. However, systematic investigation into the comparative performance of traditional mechanistic models and machine learning approaches in forecasting the transmission dynamics of this pathogen are still rare. Here, we compare one of the most widely used semi-mechanistic models for measles (TSIR) with a commonly used machine learning approach (LASSO), comparing performance and limits in predicting short to long term outbreak trajectories and seasonality for both regular and less regular measles outbreaks in England and Wales (E&W) and the United States. First, our results indicate that the proposed LASSO model can efficiently use data from multiple major cities and achieve similar short-to-medium term forecasting performance to semi-mechanistic models for E&W epidemics. Second, interestingly, the LASSO model also captures annual to biennial bifurcation of measles epidemics in E&W caused by susceptible response to the late 1940s baby boom. LASSO may also outperform TSIR for predicting less-regular dynamics such as those observed in major cities in US between 1932-45. Although both approaches capture short-term forecasts, accuracy suffers for both methods as we attempt longer-term predictions in highly irregular, post-vaccination outbreaks in E&W. Finally, we illustrate that the LASSO model can both qualitatively and quantitatively reconstruct mechanistic assumptions, notably susceptible dynamics, in the TSIR model. Our results characterize the limits of predictability of infectious disease dynamics for strongly immunizing pathogens with both mechanistic and machine learning models, and identify connections between these two approaches.


Asunto(s)
Enfermedades Transmisibles , Epidemias , Sarampión , Enfermedades Transmisibles/epidemiología , Brotes de Enfermedades , Humanos , Aprendizaje Automático , Sarampión/epidemiología , Estados Unidos/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...